6400 independent reflections

 $R_{\rm int} = 0.057$

4748 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Chlorothiazide dimethyl sulfoxide solvate

Andrea Johnston,^a Alastair J. Florence,^a* Philippe Fernandes^a and Alan R. Kennedy^b

^aSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, The John Arbuthnott Building, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and ^bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland

Correspondence e-mail: alastair florence@strath.ac.uk

Received 29 March 2007; accepted 3 April 2007

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.004 Å; R factor = 0.043; wR factor = 0.112; data-to-parameter ratio = 15.7.

Chlorothiazide forms a 1:1 solvate with dimethyl sulfoxide 6-chloro-4H-1,2,4-benzothiadiazine-7-(systematic name: sulfonamide 1,1-dioxide dimethyl sulfoxide solvate). $C_7H_6ClN_3O_4S_2$ · C_2H_6OS . The compound crystallizes with two molecules of solvent and two molecules of chlorothiazide in the asymmetric unit and displays an extensive network of hydrogen bonds.

Related literature

For details on experimental methods used to obtain this form, see: Florence et al. (2003, 2006). For related literature on chlorothiazide, see: Dupont & Dideberg (1970), Shankland et al. (1997) and Johnston, Florence, Fernandes et al. (2007). Intermolecular interactions in polymorphs and solvates of the related thiazide diuretic hydrochlorothiazide have also been studied (Johnston, Florence, Shankland et al., 2007).

Experimental

Crystal data C7H6ClN3O4S2·C2H6OS $M_{r} = 373.85$ Triclinic, P1 a = 9.0965 (3) Å b = 11.2081 (4) Å c = 15.8916 (5) Å $\alpha = 109.009 (2)^{\circ}$ $\beta = 103.384 \ (2)^{\circ}$

 $\gamma = 96.246 \ (2)^{\circ}$ $V = 1460.07 (9) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.71 \text{ mm}^{-1}$ T = 123 (2) K $0.25 \times 0.25 \times 0.15 \text{ mm}$ Data collection

Nonius KappaCCD area-detector diffractometer Absorption correction: none 36041 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.112$	independent and constrained
S = 1.04	refinement
6400 reflections	$\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^{-3}$
407 parameters	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H1N\cdots O5$ $N1-HN\cdots N3A^{i}$ $N1-H3N\cdots O5^{ii}$	0.80 (3)	1.92 (3)	2.704 (3)	168 (3)
	0.83 (3)	2.24 (4)	3.055 (4)	167 (3)
	0.80 (3)	2.04 (3)	2.821 (3)	164 (3)
$N2A - H4N \cdots O5A^{m}$ $N1A - H5N \cdots N3^{iv}$ $N1A - H6N \cdots O5A^{v}$	0.78 (3)	1.94 (3)	2.714 (3)	171 (3)
	0.78 (3)	2.27 (4)	3.020 (3)	162 (3)
	0.85 (3)	2.03 (3)	2.865 (3)	167 (3)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z; (iv) -x, -y, -z; (v) -x + 1, -y + 1, -z.

Data collection: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997; software used to prepare material for publication: SHELXL97.

The authors thank the Basic Technology Programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (http:// www.cposs.org.uk).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2266).

References

Dupont, L. & Dideberg, O. (1970). Acta Cryst. B26, 1884-1885.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.
- Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922-924.
- Johnston, A., Florence, A. J., Fernandes, P. & Kennedy, A. R. (2007). Acta Cryst. E63, o2422.
- Johnston, A., Florence, A. J., Shankland, N., Kennedy, A. R., Shankland, K. & Price, S. L. (2007). Cryst. Growth Des. 7, 705-712.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Shankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569-572
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, o2423 [doi:10.1107/S1600536807016406]

Chlorothiazide dimethyl sulfoxide solvate

A. Johnston, A. J. Florence, P. Fernandes and A. R. Kennedy

Comment

The title compound, (I), was synthesized by the same method as the similar compound chlorothiazide *N*,*N*-dimethylacetamide solvate (1/2) (Johnston, Florence, Fernandes *et al.*, 2007). Here, we report the crystal structure of (I) determined by single-crystal X-ray diffraction (Fig. 1).

The molecules of (I) crystallize in space group PT with two chlorothiazide (CT) and two dimethyl sulfoxide (DMSO) molecules in the asymmetric unit. Bond lengths and angles in the chlorothiazide group of (I) are

comparable with those of the related compound chlorothiazide *N*,*N*-dimethylacetamide solvate (1/2) (Johnston, Florence, Fernandes *et al.*, 2007).

Hydrogen-bonded chains of CT molecules are formed via contacts 2 and 5 (Table 1) and connected to adjacent DMSO molecules *via* contacts 1, 3, 4 and 6 to form a layered structure of alternating CT and DMSO molecules (Fig. 2).

Experimental

A single-crystal sample of the title compound, (I), was recrystallized from a saturated solution in dimethyl sulfoxide by isothermal solvent evaporation at 278 K.

Refinement

H atoms bonded to N atoms were found in a difference synthesis and refined freely, but all other H atoms were constrained to idealised geometry using riding models, with C—H = 0.95-0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$.

Figures

Fig. 1. The asymmetric unit of (I), showing 50% probablility displacement ellipsoids.

Fig. 2. A packing diagram for (I), showing alternating layers of CT and DMSO molecules, viewed down the b axis. Molecules are coloured by symmetry equivalence.

6-chloro-4H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide dimethyl sulfoxide solvate

Crystal data	
$C_7H_6ClN_3O_4S_2 \cdot C_2H_6OS$	Z = 4
$M_r = 373.85$	$F_{000} = 768$
Triclinic, PT	$D_{\rm x} = 1.701 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.0965 (3) Å	Cell parameters from 6375 reflections
b = 11.2081 (4) Å	$\theta = 2.9 - 27.1^{\circ}$
c = 15.8916 (5) Å	$\mu = 0.71 \text{ mm}^{-1}$
$\alpha = 109.009 \ (2)^{\circ}$	T = 123 (2) K
$\beta = 103.384 \ (2)^{\circ}$	Cut block, colourless
$\gamma = 96.246 \ (2)^{\circ}$	$0.25\times0.25\times0.15~mm$
$V = 1460.07 (9) \text{ Å}^3$	

Data collection

Nonius KappaCCD area-detector diffractometer	4748 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.057$
Monochromator: graphite	$\theta_{\text{max}} = 27.1^{\circ}$
T = 123(2) K	$\theta_{\min} = 3.1^{\circ}$
φ and ω scans	$h = -11 \rightarrow 11$
Absorption correction: none	$k = -14 \rightarrow 14$
36041 measured reflections	$l = -20 \rightarrow 20$
6400 independent reflections	

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0496P)^2 + 1.3342P]$
	where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.043$	$(\Delta/\sigma)_{\text{max}} = 0.001$
$wR(F^2) = 0.112$	$\Delta \rho_{\text{max}} = 0.71 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.04	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$
6400 reflections	Extinction correction: none

407 parameters

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	0.78822 (8)	0.54314 (6)	0.48340 (5)	0.02664 (17)
Cl1A	0.22271 (8)	-0.04500 (6)	0.02658 (5)	0.02603 (17)
S1	0.19851 (7)	0.10617 (6)	0.29501 (5)	0.02128 (16)
S1A	0.78675 (8)	0.41554 (6)	0.19570 (5)	0.02323 (17)
S2	0.76779 (8)	0.28008 (6)	0.53626 (5)	0.02136 (16)
S2A	0.22252 (8)	0.19926 (6)	-0.04620 (5)	0.02154 (16)
01	0.1121 (2)	0.12083 (19)	0.36173 (13)	0.0280 (5)
O1A	0.8685 (2)	0.4035 (2)	0.12706 (14)	0.0349 (5)
O3	0.2377 (2)	-0.01677 (18)	0.25809 (14)	0.0315 (5)
O3A	0.7356 (2)	0.53353 (18)	0.22984 (15)	0.0365 (5)
O2	0.8963 (2)	0.27955 (18)	0.49818 (13)	0.0257 (4)
O2A	0.2797 (2)	0.30466 (18)	-0.06949 (13)	0.0270 (4)
O4	0.7018 (2)	0.16690 (18)	0.54795 (13)	0.0270 (4)
O4A	0.0953 (2)	0.2041 (2)	-0.00693 (13)	0.0289 (5)
N3	0.0993 (3)	0.1405 (2)	0.20961 (16)	0.0241 (5)
N3A	0.8968 (3)	0.3918 (2)	0.28270 (15)	0.0242 (5)
N2	0.2675 (3)	0.3372 (2)	0.24384 (16)	0.0209 (5)
N2A	0.7405 (3)	0.1942 (2)	0.26051 (16)	0.0211 (5)
N1	0.8120 (3)	0.3972 (3)	0.63228 (18)	0.0299 (6)
N1A	0.1847 (3)	0.0712 (3)	-0.13469 (18)	0.0278 (6)
C3	0.1405 (3)	0.2460 (3)	0.19625 (18)	0.0227 (6)
H3	0.0724	0.2600	0.1468	0.027*
C3A	0.8641 (3)	0.2898 (3)	0.30293 (18)	0.0229 (6)
H3A	0.9369	0.2828	0.3538	0.027*
C2	0.3815 (3)	0.3307 (2)	0.31655 (18)	0.0190 (5)
C2A	0.6220 (3)	0.1890 (2)	0.18582 (18)	0.0182 (5)
C7	0.3671 (3)	0.2252 (2)	0.34459 (18)	0.0190 (5)

C7A	0.6268 (3)	0.2885 (2)	0.15053 (18)	0.0190 (5)
C1	0.4842 (3)	0.2148 (2)	0.41370 (18)	0.0199 (6)
H1	0.4739	0.1415	0.4311	0.024*
C1A	0.5055 (3)	0.2868 (2)	0.07812 (18)	0.0206 (6)
H1A	0.5092	0.3555	0.0556	0.025*
C5	0.6158 (3)	0.3102 (2)	0.45738 (18)	0.0199 (6)
C5A	0.3796 (3)	0.1857 (2)	0.03880 (18)	0.0193 (5)
C6	0.6271 (3)	0.4191 (2)	0.43066 (19)	0.0209 (6)
C6A	0.3772 (3)	0.0845 (2)	0.07322 (18)	0.0193 (5)
C4	0.5130 (3)	0.4285 (2)	0.36100 (18)	0.0202 (6)
H4	0.5234	0.5013	0.3431	0.024*
C4A	0.4955 (3)	0.0863 (2)	0.14576 (18)	0.0211 (6)
H4A	0.4911	0.0178	0.1685	0.025*
S3A	0.81126 (9)	0.94876 (7)	0.38266 (5)	0.02774 (18)
S3	0.27965 (11)	0.58546 (7)	0.12608 (5)	0.0363 (2)
O5A	0.7186 (2)	0.97587 (18)	0.29982 (13)	0.0262 (4)
05	0.3151 (2)	0.56294 (19)	0.21714 (14)	0.0292 (5)
C8A	0.9157 (3)	0.8318 (3)	0.3362 (2)	0.0341 (7)
H8A	0.8484	0.7661	0.2784	0.051*
H9A	0.9523	0.7911	0.3810	0.051*
H10A	1.0041	0.8733	0.3234	0.051*
C9A	0.6747 (4)	0.8466 (3)	0.4064 (3)	0.0450 (9)
H11A	0.5953	0.8932	0.4249	0.068*
H12A	0.7274	0.8207	0.4569	0.068*
H13A	0.6264	0.7698	0.3506	0.068*
C8	0.4120 (4)	0.7282 (4)	0.1481 (3)	0.0505 (10)
H8	0.4029	0.7971	0.2024	0.076*
Н9	0.3889	0.7540	0.0940	0.076*
H10	0.5173	0.7122	0.1602	0.076*
C9	0.1108 (4)	0.6518 (4)	0.1194 (3)	0.0667 (13)
H11	0.0234	0.5871	0.1133	0.100*
H12	0.0894	0.6777	0.0652	0.100*
H13	0.1263	0.7271	0.1758	0.100*
H1N	0.286 (4)	0.398 (3)	0.230 (2)	0.033 (9)*
H2N	0.893 (4)	0.450 (3)	0.647 (2)	0.033 (9)*
H3N	0.771 (4)	0.393 (3)	0.671 (2)	0.034 (10)*
H4N	0.737 (3)	0.137 (3)	0.2779 (19)	0.015 (7)*
H5N	0.110 (4)	0.023 (3)	-0.142 (2)	0.034 (10)*
H6N	0.218 (3)	0.070 (3)	-0.180 (2)	0.016 (7)*
Atomic displace	ement parameters (\hat{A}^2	?)		
r	1	/		

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0221 (4)	0.0211 (3)	0.0306 (4)	-0.0037 (3)	0.0022 (3)	0.0076 (3)
Cl1A	0.0214 (3)	0.0224 (3)	0.0289 (4)	-0.0054 (3)	0.0015 (3)	0.0092 (3)
S1	0.0168 (3)	0.0201 (3)	0.0228 (4)	-0.0013 (3)	0.0014 (3)	0.0070 (3)
S1A	0.0189 (3)	0.0203 (3)	0.0263 (4)	-0.0031 (3)	0.0010 (3)	0.0091 (3)
S2	0.0173 (3)	0.0231 (3)	0.0218 (3)	0.0016 (3)	0.0023 (3)	0.0088 (3)

S2A	0.0176 (3)	0.0250 (4)	0.0207 (3)	0.0028 (3)	0.0023 (3)	0.0091 (3)
01	0.0211 (10)	0.0343 (11)	0.0279 (11)	-0.0017 (8)	0.0057 (8)	0.0136 (9)
O1A	0.0268 (11)	0.0451 (13)	0.0325 (12)	-0.0064 (10)	0.0055 (9)	0.0200 (10)
O3	0.0284 (11)	0.0214 (10)	0.0351 (12)	-0.0002 (8)	0.0002 (9)	0.0059 (9)
O3A	0.0334 (12)	0.0166 (10)	0.0472 (13)	-0.0003 (9)	-0.0024 (10)	0.0071 (9)
O2	0.0196 (10)	0.0315 (11)	0.0273 (11)	0.0065 (8)	0.0064 (8)	0.0122 (9)
O2A	0.0268 (11)	0.0277 (11)	0.0263 (11)	0.0024 (8)	0.0019 (8)	0.0143 (9)
O4	0.0218 (10)	0.0277 (11)	0.0308 (11)	0.0024 (8)	0.0007 (8)	0.0153 (9)
O4A	0.0236 (11)	0.0397 (12)	0.0264 (11)	0.0099 (9)	0.0073 (9)	0.0146 (9)
N3	0.0201 (12)	0.0270 (12)	0.0209 (12)	-0.0008 (10)	0.0007 (9)	0.0084 (10)
N3A	0.0196 (12)	0.0273 (13)	0.0215 (12)	0.0003 (10)	0.0006 (9)	0.0084 (10)
N2	0.0216 (12)	0.0206 (12)	0.0214 (12)	0.0030 (10)	0.0045 (10)	0.0104 (10)
N2A	0.0224 (12)	0.0209 (12)	0.0215 (12)	0.0042 (10)	0.0043 (10)	0.0111 (10)
N1	0.0252 (14)	0.0360 (15)	0.0227 (14)	-0.0042 (12)	0.0053 (12)	0.0078 (12)
N1A	0.0253 (14)	0.0313 (14)	0.0202 (13)	-0.0058 (11)	0.0050 (11)	0.0055 (11)
C3	0.0208 (14)	0.0291 (15)	0.0196 (14)	0.0077 (12)	0.0052 (11)	0.0102 (12)
C3A	0.0186 (14)	0.0289 (15)	0.0188 (14)	0.0052 (11)	0.0028 (11)	0.0072 (11)
C2	0.0184 (13)	0.0211 (13)	0.0195 (13)	0.0060 (11)	0.0073 (11)	0.0079 (11)
C2A	0.0164 (13)	0.0195 (13)	0.0195 (13)	0.0039 (10)	0.0066 (10)	0.0068 (10)
C7	0.0181 (13)	0.0186 (13)	0.0199 (13)	0.0034 (10)	0.0060 (11)	0.0060 (11)
C7A	0.0169 (13)	0.0172 (13)	0.0197 (13)	-0.0001 (10)	0.0034 (11)	0.0050 (10)
C1	0.0181 (13)	0.0204 (13)	0.0221 (14)	0.0027 (11)	0.0064 (11)	0.0088 (11)
C1A	0.0236 (14)	0.0183 (13)	0.0212 (14)	0.0039 (11)	0.0066 (11)	0.0088 (11)
C5	0.0180 (13)	0.0223 (14)	0.0184 (13)	0.0033 (11)	0.0044 (11)	0.0067 (11)
C5A	0.0183 (13)	0.0201 (13)	0.0187 (13)	0.0039 (10)	0.0043 (11)	0.0066 (11)
C6	0.0160 (13)	0.0176 (13)	0.0247 (14)	-0.0016 (10)	0.0049 (11)	0.0043 (11)
C6A	0.0165 (13)	0.0160 (12)	0.0216 (14)	-0.0007 (10)	0.0042 (11)	0.0040 (10)
C4	0.0205 (14)	0.0176 (13)	0.0245 (14)	0.0032 (10)	0.0084 (11)	0.0090 (11)
C4A	0.0221 (14)	0.0189 (13)	0.0235 (14)	0.0034 (11)	0.0069 (11)	0.0090 (11)
S3A	0.0363 (4)	0.0231 (4)	0.0237 (4)	0.0067 (3)	0.0045 (3)	0.0110 (3)
S3	0.0579 (6)	0.0253 (4)	0.0265 (4)	0.0114 (4)	0.0091 (4)	0.0116 (3)
O5A	0.0290 (11)	0.0280 (11)	0.0263 (11)	0.0083 (9)	0.0067 (9)	0.0161 (9)
O5	0.0310 (11)	0.0316 (11)	0.0303 (11)	0.0071 (9)	0.0087 (9)	0.0178 (9)
C8A	0.0271 (16)	0.0289 (16)	0.0469 (19)	0.0074 (13)	0.0046 (14)	0.0178 (14)
C9A	0.053 (2)	0.052 (2)	0.050 (2)	0.0162 (18)	0.0238 (18)	0.0367 (18)
C8	0.041 (2)	0.063 (2)	0.073 (3)	0.0148 (18)	0.0268 (19)	0.048 (2)
C9	0.029 (2)	0.072 (3)	0.114 (4)	0.0059 (19)	0.003 (2)	0.067 (3)

Geometric parameters (Å, °)

Cl1—C6	1.736 (3)	N1A—H5N	0.78 (4)
Cl1A—C6A	1.733 (3)	N1A—H6N	0.84 (3)
S1—O1	1.439 (2)	N2A—H4N	0.78 (3)
S1—N3	1.629 (3)	C1—C7	1.387 (4)
S1—C7	1.750 (3)	C1—C5	1.383 (4)
S1—O3	1.431 (2)	C2—C4	1.397 (4)
S2—O2	1.435 (2)	C2—C7	1.397 (3)
S2—N1	1.584 (3)	C4—C6	1.372 (4)
S2—C5	1.781 (3)	C5—C6	1.418 (4)

52 01	1 420 (2)	01 111	0.0500
S2—04	1.430 (2)		0.9500
SIA—OIA	1.436 (2)	С3—Н3	0.9500
SIA-O3A	1.429 (2)	C4—H4	0.9500
SIA—N3A	1.625 (2)	CIA—C/A	1.391 (4)
SIAC/A	1.749 (3)	CIA—C5A	1.382 (4)
S2A—O2A	1.430 (2)	C2A—C7A	1.403 (3)
S2A—O4A	1.434 (2)	C2A—C4A	1.396 (4)
S2A—N1A	1.584 (3)	C4A—C6A	1.376 (4)
S2A—C5A	1.782 (3)	C5A—C6A	1.411 (3)
S3A—C8A	1.770 (3)	C1A—H1A	0.9500
S3A—C9A	1.785 (4)	СЗА—НЗА	0.9500
S3A—O5A	1.529 (2)	C4A—H4A	0.9500
S3—O5	1.517 (2)	C8A—H10A	0.9800
S3—C8	1.776 (5)	C8A—H8A	0.9800
S3—C9	1.774 (4)	С8А—Н9А	0.9800
N2—C3	1.337 (4)	С9А—Н11А	0.9800
N2—C2	1.390 (4)	C9A—H12A	0.9800
N3—C3	1.299 (4)	С9А—Н13А	0.9800
N1—H3N	0.80 (3)	С8—Н8	0.9800
N1—H2N	0.83 (4)	С8—Н9	0.9800
N2—H1N	0.79 (4)	C8—H10	0.9800
N2A—C3A	1.335 (4)	С9—Н11	0.9800
N2A—C2A	1.387 (4)	С9—Н12	0.9800
N3A—C3A	1.307 (4)	С9—Н13	0.9800
01-81-03	117.17 (13)	Cl1—C6—C5	120.9 (2)
01-S1-N3	107.46 (13)	S1—C7—C1	119.00 (19)
01 - S1 - C7	108.53 (13)	S1—C7—C2	120.4 (2)
03 - 81 - N3	108 83 (13)	C1 - C7 - C2	120.1(2) 120.6(2)
03 - 81 - C7	109.21 (12)	С7—С1—Н1	120.00
$N_3 = S_1 = C_7$	104 96 (13)	C5-C1-H1	120.00
02 - 82 - 04	120 13 (13)	N3-C3-H3	116.00
02 - 82 - 81	10854(14)	N2-C3-H3	116.00
02 - 52 - 101	105.75(12)	$C_2 - C_4 - H_4$	120.00
02 - 32 - 03	103.73(12) 108.97(15)		120.00
04 = 52 = 101	100.97(13) 104.86(12)	$C_{0} = C_{4} = 114$	120.00
N1 S2 C5	104.00(12) 107.06(14)	C_{A}	120.4(2)
$\frac{N1-S2-CS}{O2A} = \frac{S1A}{N2A}$	107.90(14) 108.85(12)	N2A = C2A = C4A	120.7(2)
O_{A} S1A C7A	108.83(13) 108.47(12)	$N_2A = C_2A = C_7A$	120.2(2)
USA—SIA—C/A	108.47(13)	C4A = C2A = C7A	119.1 (2)
N3A = SIA = C/A	105.22 (13)	N2A - C3A - N3A	127.7 (3)
OIA—SIA—O3A	117.48 (14)	C2A—C4A—C6A	119.8 (2)
OIA—SIA—N3A	107.72 (13)	S2A—C5A—C6A	124.1 (2)
OIA—SIA—C/A	108.43 (13)	CIA—C5A—C6A	118.7 (2)
02A—S2A—O4A	120.19 (13)	S2A—C5A—C1A	117.00 (19)
O2A—S2A—N1A	108.56 (15)	CIIA—C6A—C4A	117.83 (19)
02A—S2A—C5A	105.70 (12)	Cl1A—C6A—C5A	120.8 (2)
N1A—S2A—C5A	106.90 (14)	C4A—C6A—C5A	121.3 (2)
O4A—S2A—N1A	109.18 (14)	S1A—C7A—C1A	118.89 (19)
O4A—S2A—C5A	105.52 (12)	C1A—C7A—C2A	120.6 (2)
C8A—S3A—C9A	97.75 (17)	S1AC7AC2A	120.5 (2)

O5A—S3A—C9A	104.75 (16)	C7A—C1A—H1A	120.00
O5A—S3A—C8A	105.48 (13)	C5A—C1A—H1A	120.00
O5—S3—C8	104.78 (17)	N3A—C3A—H3A	116.00
C8—S3—C9	97.3 (2)	N2A—C3A—H3A	116.00
O5—S3—C9	106.00 (17)	C2A—C4A—H4A	120.00
C2—N2—C3	123.8 (2)	С6А—С4А—Н4А	120.00
S1—N3—C3	122.2 (2)	S3A—C8A—H9A	109.00
H2N—N1—H3N	120 (3)	H8A—C8A—H10A	109.00
S2—N1—H2N	118 (2)	S3A—C8A—H10A	109.00
S2—N1—H3N	119 (2)	Н8А—С8А—Н9А	109.00
C2—N2—H1N	115 (2)	S3A—C8A—H8A	109.00
C3—N2—H1N	122 (2)	H9A—C8A—H10A	110.00
C2A—N2A—C3A	124.1 (2)	S3A—C9A—H13A	110.00
S1A—N3A—C3A	122.1 (2)	H11A—C9A—H13A	109.00
S2A—N1A—H6N	120 (2)	H12A—C9A—H13A	109.00
S2A—N1A—H5N	115 (2)	H11A—C9A—H12A	109.00
H5N—N1A—H6N	120 (3)	S3A—C9A—H11A	109.00
C3A—N2A—H4N	117 (2)	S3A—C9A—H12A	109.00
C2A—N2A—H4N	119 (2)	S3—C8—H8	109.00
C5—C1—C7	120.5 (2)	S3—C8—H9	109.00
N2-C2-C4	120.2 (2)	S3—C8—H10	109.00
N2—C2—C7	120.4 (2)	Н8—С8—Н9	110.00
C4—C2—C7	119.4 (2)	H8—C8—H10	109.00
N2—C3—N3	127.7 (3)	H9—C8—H10	110.00
C2—C4—C6	119.8 (2)	S3—C9—H11	109.00
S2—C5—C1	117.00 (19)	S3—C9—H12	109.00
S2—C5—C6	124.2 (2)	S3—C9—H13	109.00
C1—C5—C6	118.5 (2)	Н11—С9—Н12	109.00
C4—C6—C5	121.2 (2)	H11—C9—H13	110.00
Cl1—C6—C4	117.87 (19)	Н12—С9—Н13	110.00
O1—S1—N3—C3	107.7 (3)	C3A—N2A—C2A—C7A	-0.4 (4)
O3—S1—N3—C3	-124.5 (2)	C2A—N2A—C3A—N3A	-0.7 (5)
C7—S1—N3—C3	-7.7 (3)	S1A—N3A—C3A—N2A	-1.9 (4)
O1—S1—C7—C1	72.2 (2)	C5—C1—C7—C2	1.4 (4)
O1—S1—C7—C2	-106.2 (2)	C5—C1—C7—S1	-176.9 (2)
O3—S1—C7—C1	-56.6 (3)	C7—C1—C5—S2	-173.6 (2)
O3—S1—C7—C2	125.0 (2)	C7—C1—C5—C6	0.8 (4)
N3—S1—C7—C1	-173.2 (2)	C7—C2—C4—C6	0.8 (4)
N3—S1—C7—C2	8.5 (3)	N2—C2—C7—S1	-5.2 (4)
O2—S2—C5—C1	117.5 (2)	N2—C2—C7—C1	176.5 (3)
O2—S2—C5—C6	-56.5 (3)	C4—C2—C7—S1	176.1 (2)
O4—S2—C5—C1	-10.4 (2)	N2-C2-C4-C6	-177.9 (3)
O4—S2—C5—C6	175.6 (2)	C4—C2—C7—C1	-2.2 (4)
N1—S2—C5—C1	-126.5 (2)	C2—C4—C6—Cl1	179.9 (2)
N1—S2—C5—C6	59.6 (3)	C2—C4—C6—C5	1.3 (4)
C7A—S1A—N3A—C3A	4.3 (3)	S2—C5—C6—C4	171.7 (2)
O1A—S1A—C7A—C1A	-69.2 (2)	C1—C5—C6—Cl1	179.4 (2)
O1A—S1A—C7A—C2A	109.9 (2)	C1—C5—C6—C4	-2.2 (4)
O3A—S1A—C7A—C1A	59.4 (3)	S2C5C6Cl1	-6.8 (3)

O3A—S1A—C7A—C2A	-121.5 (2)	C7A—C1A—C5A—S2A	174.5 (2)
O1A—S1A—N3A—C3A	-111.2 (3)	C7A—C1A—C5A—C6A	-0.3 (4)
O3A—S1A—N3A—C3A	120.4 (2)	C5A—C1A—C7A—S1A	177.9 (2)
N3A—S1A—C7A—C2A	-5.2 (3)	C5A—C1A—C7A—C2A	-1.2 (4)
N3A—S1A—C7A—C1A	175.8 (2)	N2A-C2A-C4A-C6A	178.4 (3)
O4A—S2A—C5A—C6A	58.8 (3)	C7A—C2A—C4A—C6A	-0.6 (4)
O4A—S2A—C5A—C1A	-115.6 (2)	N2A—C2A—C7A—S1A	3.6 (4)
O2A—S2A—C5A—C1A	12.7 (2)	N2A—C2A—C7A—C1A	-177.3 (3)
N1A—S2A—C5A—C1A	128.2 (2)	C4A—C2A—C7A—S1A	-177.4 (2)
N1A—S2A—C5A—C6A	-57.3 (3)	C4A—C2A—C7A—C1A	1.6 (4)
O2A—S2A—C5A—C6A	-172.8 (2)	C2A-C4A-C6A-C11A	-179.7 (2)
C2—N2—C3—N3	1.8 (5)	C2A—C4A—C6A—C5A	-0.9 (4)
C3—N2—C2—C4	178.1 (3)	S2A—C5A—C6A—Cl1A	5.8 (3)
C3—N2—C2—C7	-0.6 (4)	S2A—C5A—C6A—C4A	-173.0 (2)
S1—N3—C3—N2	3.5 (4)	C1A—C5A—C6A—Cl1A	-179.9 (2)
C3A—N2A—C2A—C4A	-179.3 (3)	C1A-C5A-C6A-C4A	1.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N2—H1N…O5	0.80 (3)	1.92 (3)	2.704 (3)	168 (3)
N1—H2N···N3A ⁱ	0.83 (3)	2.24 (4)	3.055 (4)	167 (3)
N1—H3N···O5 ⁱⁱ	0.80 (3)	2.04 (3)	2.821 (3)	164 (3)
N2A—H4N…O5A ⁱⁱⁱ	0.78 (3)	1.94 (3)	2.714 (3)	171 (3)
N1A—H5N…N3 ^{iv}	0.78 (3)	2.27 (4)	3.020 (3)	162 (3)
N1A—H6N···O5A ^v	0.85 (3)	2.03 (3)	2.865 (3)	167 (3)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*, *y*-1, *z*; (iv) -*x*, -*y*, -*z*; (v) -*x*+1, -*y*+1, -*z*.

Fig. 1

